Chemistry 2

Quantum Mechanics in Chemistry Lecture 1

Your lecturers

8amAsaph Widmer-Cooper

Room 316 asaph.widmer-cooper@sydney.edu.au

12pm Adam Bridgeman

Room 543A adam.bridgeman@sydney.edu.au

Revision - H₂⁺

- electron. Near each nucleus, electron should behave as a 1s
- nucleus At dissociation, 1s orbital will be exact solution at each

Revision – H₂⁺

using the 1s functions available At equilibrium, we have to make the lowest energy possible

Revision - H₂⁺

Revision – H₂

Revision – He₂

2nd row homonuclear diatomics

Now what do we do? So many orbitals!

Interacting orbitals

Schrödinger equation. There are two considerations: Orbitals can interact and combine to make new approximate solutions to the

- linear combinations. In quantum mechanics, energy and frequency are Orbitals of the same energy interact completely, yielding completely mixed 1.Orbitals interact inversely proportionally to their energy difference resonance. related (E=hv). So, energy matching is equivalent to the phenomenon of
- show how beta is calculated in a later lecture. 2.The extent of orbital mixing is given by the **resonance integral** β . We will

Interacting orbitals

<u>:-</u> completely, yielding completely mixed linear combinations. energy difference. Orbitals of the same energy interact Orbitals interact proportionally to the inverse of their

15

15

(First year) MO diagram

Orbitals interact most with the corresponding orbital on the other atom to make perfectly mixed linear combinations. (we ignore core).

Molecular Orbital Theory - Revision

Molecular Orbital Theory - Revision

Can predict bond strengths qualitatively

Interacting orbitals

<u>:-</u> The extent of orbital mixing is given by the integral

$$\beta$$
 = something

$$\psi_{2s\sigma}$$
 $\psi_{2s\sigma}$ $\psi_{2p\sigma}$ $\psi_{2p\sigma}$ $\psi_{2p\sigma}$ $\psi_{2p\sigma}$

The 2s orbital on one atom can interact with the 2p from the smaller interaction than the 2s-2s interaction. We will deal other atom, but since they have different energies this is a with this later.

1s

1s

Interacting orbitals

<u>:</u> The extent of orbital mixing is given by the integral

The positive-positive term is cancelled by the positive-negative term There is no net interaction between these orbitals.

1s

1s

More refined MO diagram

σ orbitals can now interact

Q

More refined MO diagram

σ* orbitals can interact

$$2s\sigma^*$$
 σ^*

 $2s\sigma$

More refined MO diagram

 π orbitals do not interact

 $2s\sigma$

More refined MO diagram

sp mixing

This new interaction energy

Depends on β and the energy spacing between the 2sσ and the 2pσ

 $2s\sigma$

sp mixing

mixing between 2s and 2p is for Boron. and thus largest Smallest energy gap, Energy (kJ mol⁻¹) -3000-2000 -50004000 6 N 7 00 -9 2s 2p thus smallest mixing between 2s and 2p is for Fluorine. Largest energy gap, and $n^{\frac{1}{2}}$

sp mixing

weakly bound

paramagnetic

diamagnetic

 $rac{1}{2}$ $rac{1}$ $rac{1}$ $rac{1}{2}$ $rac{1}$ $rac{1}$ $rac{1}$ $rac{1}$ $rac{1}$ $rac{1}$ $rac{$

‡

‡

Z₂

Learning outcomes

- energy difference, and the resonance integral, β . Use the principle that the mixing between orbitals depends on the
- structure in simple organic molecules. •Apply the separation of σ and π bonding to describe electronic
- molecules in terms of s-p mixing. Rationalize differences in orbital energy levels of diatomic

Next lecture

- Particle in a box approximation
- solving the Schrödinger equation.

Week 10 tutorials

Wavefunctions and the Schrödinger equation.

Practice Questions

- . N .→ Why is s-p mixing more important in Li₂ than in F₂?
- How many core, σ -bonding, and π -electrons are there in
- acetylene
- D ethylene
- benzene
- buckminsterfullerene

Check that your **total** number of electrons agrees with what is expected (6 per carbon, 1 per hydrogen).